Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Talanta ; 274: 126021, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569370

RESUMO

α-hemolysin (Hla), a toxin secreted by Staphylococcus aureus (S. aureus), has been proved to be involved in the occurrence and aggravation of food poisoning. Hence, it is quite essential to establish its rapid detection methods to guarantee food safety. Sandwich ELISA based on nanobody is well known to be viable for toxins, but there is absence of nanobody against Hla, let alone a pair for it. Therefore, in this paper, we screened specific nanobodies by bio-panning and obtained the optimal nanobody pair for sandwich ELISA firstly. Then, RANbody, a novel nanobody owning both recognition and catalytic capability, is generated in a single step and at low cost through molecular recombination technology. Subsequently, sandwich ELISA was developed to detect Hla based on the nanobody and RANbody, that not only eliminated the use of secondary antibodies and animal-derived antibody, but also reduced detection time and cost, compared with traditional sandwich ELISA. Lastly, the performance has been evaluated, especially for specificity which showed no response to other hemolysins and a low limit of detection of 10 ng/mL. Besides, the proposed sandwich ELISA exhibits favorable feasibility and was successfully employed for the detection of Hla in milk and pork samples.


Assuntos
Ensaio de Imunoadsorção Enzimática , Proteínas Hemolisinas , Leite , Proteínas Hemolisinas/imunologia , Proteínas Hemolisinas/análise , Proteínas Hemolisinas/química , Ensaio de Imunoadsorção Enzimática/métodos , Animais , Leite/química , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Contaminação de Alimentos/análise , Toxinas Bacterianas/análise , Toxinas Bacterianas/imunologia , Suínos , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/imunologia , Limite de Detecção , Análise de Alimentos/métodos
2.
Int J Biol Macromol ; 253(Pt 5): 127273, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37804897

RESUMO

Food poisoning caused by Staphylococcus aureus (S. aureus) contaminated meat has received a lot of attention. Although juglone has anti-S. aureus properties, its limited water solubility prevents it from being used in food manufacturing. Juglone @ chitosan nanoemulsion (NJ) was produced for the first time in order to increase its solubility. At the same time, it was applied to the pork model. According to the findings, NJ's particle size was 119.30 nm, its polymer dispersity index (PDI) value was 0.290, and its zeta potential was -57.3 mV. And it's stable over a 7-day storage period. The cell shape and membrane integrity of S. aureus were significantly damaged by NJ. At the same time, NJ showed extreme vigor for biofilm removal. The inclusion of NJ coating significantly reduced S. aureus, total volatile base nitrogen (TVB-N), total viable count (TVC), thiobarbituric acid reactants (TBARS), and pH in the sample when using the pork feeding model. NJ, meantime, halted the sensory evaluation's fall in meat score. Additionally, NJ demonstrated good biocompatibility in mouse acute toxicity tests. The aforementioned findings demonstrate that NJ is anticipated to become an anti-S. aureus and a novel method for coating pork preservation.


Assuntos
Quitosana , Carne de Porco , Carne Vermelha , Suínos , Animais , Camundongos , Quitosana/farmacologia , Quitosana/química , Conservação de Alimentos/métodos , Staphylococcus aureus , Carne Vermelha/microbiologia , Antibacterianos/farmacologia
3.
Int J Food Microbiol ; 404: 110352, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37549593

RESUMO

In order to analyze and clarify the thermal stability of food poisoning Staphylococcus aureus (S. aureus) enterotoxin-like X (SElX) and the biological characteristics of digestive enzymes, and to evaluate the risk of S. aureus carrying selx gene in food poisoning, the selx gene carrying rates of 165 strains isolated from 95 food poisoning events from 2006 to 2019 were first statistically analyzed. Subsequently, the purified recombinant SElX protein was digested and heated, and the superantigen activity was verified with mouse spleen cells and peripheral blood mononuclear cells of kittens. At the same time, the emetic activity and toxicity of SElX were evaluated using the kitten vomiting animal model, mice toxin model and in vitro cell models. The results showed the selx gene carrying rate of 165 food poisoning S. aureus strains was 90.30 %. SElX had significant resistance to heat treatment and pepsin digestion (pH = 4.0 and pH = 4.5), and had good superantigen activity and emetic activity. However, there is no significant lethal effect on mice and no significant toxicity to cells. Importantly, we found that SElX had an inhibitory effect on acidic mucus of goblet cells in various segments of the small intestine. The present study investigated the stability of SElX, and confirmed the emetic activity of SElX by establishing a kitten vomiting model for the first time, suggesting that SElX is a high risk toxin of food poisoning, which will provide new ideas for the prevention and control of S. aureus food poisoning.


Assuntos
Doenças Transmitidas por Alimentos , Intoxicação Alimentar Estafilocócica , Infecções Estafilocócicas , Animais , Gatos , Feminino , Camundongos , Enterotoxinas/metabolismo , Staphylococcus aureus , Eméticos/metabolismo , Eméticos/farmacologia , Leucócitos Mononucleares/metabolismo , Superantígenos/genética , Superantígenos/metabolismo , Vômito/induzido quimicamente , Proteínas Recombinantes
4.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835350

RESUMO

A serious problem currently facing the field of wound healing is bacterial infection, especially Staphylococcus aureus (S. aureus) infection. Although the application of antibiotics has achieved good effects, their irregular use has resulted in the emergence of drug-resistant strains. It is thus the purpose of this study to analyze whether the naturally extracted phenolic compound, juglone, can inhibit S. aureus in wound infection. The results show that the minimum inhibitory concentration (MIC) of juglone against S. aureus was 1000 µg/mL. Juglone inhibited the growth of S. aureus by inhibiting membrane integrity and causing protein leakage. At sub-inhibitory concentrations, juglone inhibited biofilm formation, the expression of α-hemolysin, the hemolytic activity, and the production of proteases and lipases of S. aureus. When applied to infected wounds in Kunming mice, juglone (50 µL juglone with a concentration of 1000 µg/mL) significantly inhibited the number of S. aureus and had a significant inhibitory effect on the expression of inflammatory mediators (TNF-α, IL-6 and IL-1ß). Moreover, the juglone-treated group promoted wound healing. At the same time, in animal toxicity experiments, juglone had no obvious toxic effects on the main tissues and organs of mice, indicating that juglone has good biocompatibility and has the potential to be used in the treatment of wounds infected with S. aureus.


Assuntos
Antibacterianos , Naftoquinonas , Infecções Estafilocócicas , Infecção dos Ferimentos , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico
5.
Toxins (Basel) ; 14(12)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36548764

RESUMO

Alpha-hemolysin (Hla) is one of the important exotoxins of Staphylococcus aureus (S. aureus) and can be used as a target to reduce the virulence of S. aureus. This study explored the inhibitory effect of Lysine (Lys) on Hla and its application in food safety. Lys significantly inhibited the expression of Hla at sub-inhibitory concentrations and directly interacted with Hla to interfere with its oligomerization and thus significantly inhibited its hemolytic activity. Notably, Lys attenuated S. aureus damage to mouse small intestine and Caco-2 cells and delayed mouse mortality. In the food model, Lys inhibited the expression of Hla of S. aureus and had no significant effect on the sensory score. Moreover, Lys had no obvious damage effect on the main organs of mice, which indicated that Lys has good biocompatibility and has the potential to be used in the food industry as an anti-S. aureus preparation.


Assuntos
Toxinas Bacterianas , Infecções Estafilocócicas , Humanos , Animais , Camundongos , Staphylococcus aureus , Toxinas Bacterianas/metabolismo , Lisina/farmacologia , Lisina/metabolismo , Células CACO-2 , Antibacterianos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Proteínas Hemolisinas/toxicidade
6.
J Virol ; 96(7): e0024422, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35319226

RESUMO

Peste des petits ruminants virus (PPRV) is an important pathogen that seriously influences the productivity of small ruminants worldwide. We showed previously that PPRV induced sustained autophagy for their replication in host cells. Many studies have shown that exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modulate the recipient's cellular response and result in productive infection of the recipient host. Here, we show that PPRV infection results in packaging of the viral genomic RNA and partial viral proteins into exosomes of Vero cells and upregulates exosome secretion. We provide evidence showing that the exosomal viral cargo can be transferred to and establish productive infection in a new target cell. Importantly, our study reveals that PPRV-induced autophagy enhances exosome secretion and exosome-mediated virus transmission. Additionally, our data show that TSG101 may be involved in the sorting of the infectious PPRV RNA into exosomes to facilitate the release of PPRV through the exosomal pathway. Taken together, our results suggest a novel mechanism involving autophagy and exosome-mediated PPRV intercellular transmission. IMPORTANCE Autophagy plays an important role in PPRV pathogenesis. The role of exosomes in viral infections is beginning to be appreciated. The present study examined the role of autophagy in secretion of infectious PPRV from Vero cells. Our data provided the first direct evidence that ATG7-mediated autophagy enhances exosome secretion and exosome-mediated PPRV transmission. TSG101 may be involved in the sorting of the infectious PPRV RNA genomes into exosomes to facilitate the release of PPRV through the exosomal pathway. Inhibition of PPRV-induced autophagy or TSG101 expression could be used as a strategy to block exosome-mediated virus transmission.


Assuntos
Autofagia , Exossomos , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Animais , Chlorocebus aethiops , Exossomos/metabolismo , Exossomos/virologia , Peste dos Pequenos Ruminantes/transmissão , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/genética , RNA Viral/metabolismo , Ruminantes , Células Vero , Proteínas Virais/metabolismo
7.
Foodborne Pathog Dis ; 19(3): 217-225, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34978931

RESUMO

Staphylococcus aureus (S. aureus) is one of the major opportunistic foodborne pathogens as well as a source of human and animal infections. As surveillance of S. aureus and methicillin-resistant Staphylococcus aureus (MRSA) is limited in ice cream, a total of 240 ice cream samples were collected from three cities in Shaanxi province, China, and screened for S. aureus. All isolates were characterized by antimicrobial susceptibility testing, staphylococcal protein A typing, multilocus sequence typing, enterobacterial repetitive intergenic consensus typing, virulence, and resistance genes. S. aureus was recovered from 10 (4.2%) ice cream samples (13 isolates) with average count from 10 to 100 colony-forming units per gram in all cases. Resistance to amoxicillin/clavulanic acid, penicillin, and trimethoprim/sulfamethoxazole (each 100.0%) was most frequently observed, followed by ampicillin (76.9%), erythromycin (46.2%), ceftriaxone (30.8%), and cefoxitin (15.4%). A total of five types of antimicrobial resistance genes were detected, including ß-lactam (blaZ and mecA), macrolide (ermB and ermC), tetracycline (tetK), aminoglycoside [aac(6')/aph(2') and aph(3')-III], and trimethoprim (dfrG). All of the strains harbored at least one staphylococcal enterotoxins gene. The commonly detected virulence genes were selw and hld (100.0%), followed by selx (92.3%); hla (84.6%); pvl (76.9%); seg, sem, and sen (each 38.5%); sei, seo, and hlb (each 30.8%); sea, seb, selu, and sely (each 23.1%); sed, sej, sek, sep, and seq (each 15.4%); and ser (7.7%). ST5-t002, ST7-t091, and ST5225-t4911 (each 15.4%) were the predominant clones, followed by ST5-t045/t105, ST6-t701/t15417, ST25-t078, ST188-t189, and ST398-t034 (each 7.7%). Among the 13 strains of S. aureus, 2 isolates were detected as MRSA (15.4%), and the molecular type belonged to ST5225-IVa-t4911. Using a 98.8% similarity cutoff, the 13 isolates were divided into 5 clusters (I-1 to I-5). These results demonstrated that the prevalence of S. aureus and MRSA was low in ice cream. However, these isolates exhibited a high level of potential pathogenicity, which represents a potential health hazard for consumers.


Assuntos
Sorvetes , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , China/epidemiologia , Farmacorresistência Bacteriana , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Prevalência , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Trimetoprima
8.
Foods ; 10(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34945505

RESUMO

Foodborne Staphylococcus aureus (S. aureus) has attracted widespread attention due to its foodborne infection and food poisoning in human. Shikonin exhibits antibacterial activity against a variety of microorganisms, but there are few studies on its antibacterial activity against S. aureus. This study aims to explore the antibacterial activity and mechanism of shikonin against foodborne S. aureus. The results show that the minimum inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs) of shikonin were equal for all tested strains ranging from 35 µg/mL to 70 µg/mL. Shikonin inhibited the growth of S. aureus by reducing intracellular ATP concentrations, hyperpolarizing cell membrane, destroying the integrity of cell membrane, and changing cell morphology. At the non-inhibitory concentrations (NICs), shikonin significantly inhibited biofilm formation of S. aureus, which was attributed to inhibiting the expression of cidA and sarA genes. Moreover, shikonin also markedly inhibited the transcription and expression of virulence genes (sea and hla) in S. aureus. In addition, shikonin has exhibited antibacterial ability against both planktonic and biofilm forms of S. aureus. Importantly, in vivo results show that shikonin has excellent biocompatibility. Moreover, both the heat stability of shikonin and the antimicrobial activity of shikonin against S. aureus were excellent in food. Our findings suggest that shikonin are promising for use as a natural food additive, and it also has great potential in effectively controlling the contamination of S. aureus in food and reducing the number of illnesses associated with S. aureus.

9.
J Dairy Sci ; 104(9): 9596-9606, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34176628

RESUMO

This study aimed to investigate the prevalence, molecular characteristics and antibiotic resistance of Staphylococcus aureus isolates from yak butter in Tibet, China. A total of 218 yak butter samples were collected from retail stores in Tibet and screened for Staph. aureus. Furthermore, the virulence genes, resistance genes, antimicrobial susceptibility, and molecular typing [pulsed-field gel electrophoresis (PFGE), multilocus sequence typing, and staphylococcal protein A (spa) typing] of Staph. aureus isolates were detected. The results showed that 12.4% of yak butter samples were contaminated with Staph. aureus, including 5 samples positive for methicillin-resistant Staph. aureus (MRSA). Among all isolates, 96.3% harbored one or more virulence genes, including classical (sea and sec), novel enterotoxin-encoding genes (seh, sek, sel, and seq), and hemolysin genes (hla and hld). All isolates were resistant to at least 2 different antibiotic classes, and the isolates were most commonly resistant to sulfonamides, ß-lactams, and erythromycin. For resistance genes, blaZ (74.1%) was most frequently detected, followed by dfrG (51.9%), erm(B) (22.2%), mecA (18.5%), tet(K) (14.8%), aph(2″)-Ia, aph(3')-III, and ant(6)-Ia (11.1% for each), and erm(C) (7.4%). We detected 8 spa types, 6 sequence types (ST), and 5 clonal complex (CC) types. In addition, 1 isolate of Staph. aureus was nontypeable. We found that CC1-ST1-t559 (55.6%) was the most predominant clone, followed by CC59-ST59-t437 (11.1%), CC5-ST5-t002 (7.4%), CC1-ST1, CC1-ST1-t114, CC1-ST573-t4938, CC1-ST573-t8915, CC30-ST30-t021, and CC25-ST25-t167 (3.7% for each). For PFGE typing, a total of 5 clusters and 15 pulsotypes were generated, and some isolates from different samples showed indistinguishable pulsotypes. Our findings suggest that yak butter produced in Tibet, China, could be contaminated by Staph. aureus strains, including MRSA strains, carrying various virulence and resistance genes, representing multiple antimicrobial resistance phenotypes. The presence of potentially virulent and antibiotic-resistant Staph. aureus strains in yak butter poses a potential threat to consumers, and appropriate measures need to be taken in the production chain to reduce the occurrence of Staph. aureus in yak butter.


Assuntos
Doenças dos Bovinos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Manteiga , Bovinos , China , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana/veterinária , Tipagem de Sequências Multilocus/veterinária , Prevalência , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/genética , Tibet
10.
J Virol ; 95(10)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33504605

RESUMO

Peste des petits ruminants virus (PPRV) is an important pathogen that seriously influences the productivity of small ruminants worldwide. PPRV has evolved several mechanisms to evade IFN-I responses. We report that a novel microRNA in goat PBMCs, novel miR-3, was upregulated by PPRV to facilitate virus infection. Furthermore, PPRV V protein alone was sufficient to induce novel miR-3 expression, and NF-κB and p38 pathway may involved in the induction of novel miR-3 during PPRV infection. Importantly, we demonstrated that novel miR-3 was a potent negative regulator of IFN-α production by targeting IRAK1, which resulted in the enhancement of PPRV infection. In addition, we found that PPRV infection can activated ISGs through IFN independent and IRF3 dependent pathway. Moreover, our data revealed that novel miR-3 mediated regulation of IFN-α production may involve in the differential susceptibility between goat and sheep to PPRV. Taken together, our findings identified a new strategy taken by PPRV to escape IFN-I-mediated antiviral immune responses by engaging cellular microRNA and, thus, improve our understanding of its pathogenesis.IMPORTANCE: Peste des petits ruminants virus (PPRV) induce in the hosts a transient but severe immunosuppression, which threatens both small livestock and endangered susceptible wildlife populations in many countries. Despite extensive research has been explored, the mechanism underlying PPRV immune system evasion remains elusive. Our data provided the first direct evidence that novel microRNA-3 (novel miR-3) feedback inhibits type I IFN signaling when goat PBMCs are infected with PPRV vaccine strain N75/1, thus promoting the infection. In this study, the target of novel miR-3, IRAK1, which are important for PPRV-induced type I IFN production, have also been found. Moreover, we identified NF-κB and p38 pathways may involve in novel miR-3 induction in response to PPRV infection. Taken together, our research has provided new insight into understanding the effects of miRNA on host-virus interactions, and revealed a potential therapeutic target for antiviral intervention.

11.
Front Immunol ; 10: 2201, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616415

RESUMO

Peste des petits ruminants virus (PPRV) has emerged as a significant threat to the productivity of small ruminants worldwide. SLAM was identified as the primary receptor for PPRV and other Morbilliviruses, although the regulation of SLAM expression is not yet fully understood. In this study, we revealed a novel mechanism by which PPRV upregulates its receptor SLAM expression and thereby benefits its replication via suppressing miR-218, a novel negative miRNA directly targeting SLAM gene. We demonstrated that PPRV infection downregulates miR-218, which in turn enhances SLAM expression on the surface of goat peripheral blood mononuclear cells (PBMCs), thus promoting PPRV replication. Since SLAM signaling may modulate the immune responses induced by PPRV infection, we further examined the effect of SLAM expression on the production of various cytokines by PBMCs in the absence or presence of PPRV. We demonstrated that miR-218-mediated SLAM expression modulates the expression of IFN-γ, TNF-α, and IL-10, importantly, these modulatory effects were enhanced in the presence of PPRV infection. Furthermore, our data clearly showed that PPRV H protein is sufficient to regulate miR-218-mediated SLAM expression. Taken together, our results suggest a novel mechanism involving post-transcriptional regulation of SLAM receptor expression on goat PBMCs during PPRV infection.


Assuntos
Doenças das Cabras , Leucócitos Mononucleares , MicroRNAs/imunologia , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes/imunologia , Transdução de Sinais/imunologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Animais , Citocinas/imunologia , Regulação da Expressão Gênica/imunologia , Doenças das Cabras/imunologia , Doenças das Cabras/patologia , Doenças das Cabras/virologia , Cabras , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/patologia , Leucócitos Mononucleares/virologia , Peste dos Pequenos Ruminantes/imunologia , Peste dos Pequenos Ruminantes/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA